unit AJCBCD; interface uses Objects, Strings; const DigitSize = SizeOf(Byte); bpw_Fixed = 0; bpw_Variable = 1; bpz_Blank = True; bpz_NotBlank = False; MaxBCDSize = 100; st_Blanks25 = ' '; st_Blanks = st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25 + st_Blanks25; type PBCDArray = ^TBCDArray; TBCDArray = array[1..MaxBCDSize] of byte; TBCDSign = (BCDNegative, BCDPositive); PBCD = ^TBCD; TBCD = object(TObject) BCDSize: Integer; Sign: TBCDSign; Value: PBCDArray; Precision: Byte; constructor InitBCD(AVal: PBCD); constructor InitReal(AVal: Real; APrec: Byte; ASize: Integer); constructor InitPChar(AVal: PChar; APrec: Byte; ASize: Integer); destructor Done; virtual; constructor Load(var S: TStream); procedure Store(var S: TStream); function GetValue: PBCDArray; function GetSign: TBCDSign; function GetPrecision: Byte; function GetBCDSize: Integer; procedure SetValueBCD(AVal: PBCD); procedure SetValueReal(AVal: Real); procedure SetValuePChar(AVal: PChar); procedure SetSign(ASign: TBCDSign); procedure SetPrecision(APrec: Byte); procedure SetBCDSize(ASize: Integer); procedure AddBCD(AVal: PBCD); procedure AddReal(AVal: Real); procedure AddPChar(AVal: PChar); procedure SubtractBCD(AVal: PBCD); procedure SubtractReal(AVal: Real); procedure SubtractPChar(AVal: PChar); procedure MultiplyByBCD(AVal: PBCD); procedure MultiplyByReal(AVal: Real; APrec: Byte); procedure MultiplyByPChar(AVal: PChar; APrec: Byte); procedure DivideByBCD(AVal: PBCD); procedure DivideByReal(AVal: Real; APrec: Byte); procedure DivideByPChar(AVal: PChar; APrec: Byte); procedure AbsoluteValue; procedure Increment; procedure Decrement; procedure ShiftLeft(ShiftAmount: Byte); procedure ShiftRight(ShiftAmount: Byte); function BCD2Int: LongInt; function BCD2Real: Real; function PicStr(picture: string; Width: Integer; BlankWhenZero: Boolean): String; function StrPic(dest: PChar; picture: string; Width: Integer; BlankWhenZero: Boolean; Size: Integer): PChar; function CompareBCD(AVal: PBCD): Integer; function CompareReal(AVal: Real): Integer; function ComparePChar(AVal: PChar): Integer; end; const RBCD: TStreamRec = (ObjType: 60000; VmtLink: Ofs(TypeOf(TBCD)^); Load: @TBCD.Load; Store: @TBCD.Store); var BCDZero: PBCD; implementation {BCDAdd is a subroutine that adds the value in BCD2 to the value in } {BCD1. It is a simple magnitude addition, as if the two numbers have } {the same sign. BCDAdd makes the following assumptions: } { 1) the calling routine will manage the proper sign of the result } { of the addition. } { 2) the BCDSize of the two operands are equal } { 3) the Precision of the two operands are equal } procedure BCDAdd(BCD1, BCD2: PBCD); var i: integer; Carry: Byte; begin Carry := 0; for i := BCD1^.BCDSize downto 1 do begin BCD1^.Value^[i] := BCD1^.Value^[i] + BCD2^.Value^[i] + Carry; if BCD1^.Value^[i] > 9 then begin dec(BCD1^.Value^[i], 10); Carry := 1; end else Carry := 0; end; end; {BCDSubtraction is a subroutine that subtracts the value in BCD2 from } {the value in BCD1. It is a simple magnitude subtraction, without } {regard to the sign of the operands. BCDSubtract makes the following } {assumptions: } { 1) the calling routine will manage the proper sign of the result } { of the subtraction. } { 2) the BCDSize of the two operands are equal } { 3) the Precision of the two operands are equal } { 4) the magnitude of the value in BCD2 is less than or equal to the } { magnitude of the value in BCD1 so that the routine can perform } { a simple byte by byte subtraction } procedure BCDSubtract(BCD1, BCD2: PBCD); var i: integer; Borrow: Byte; begin Borrow := 0; for i := BCD1^.GetBCDSize downto 1 do begin BCD1^.Value^[i] := BCD1^.Value^[i] + 10 - BCD2^.Value^[i] - Borrow; if BCD1^.Value^[i] > 9 then begin dec(BCD1^.Value^[i], 10); Borrow := 0; end else Borrow := 1; end; end; constructor TBCD.InitBCD(AVal: PBCD); begin inherited Init; BCDSize := AVal^.GetBCDSize; GetMem(Value, BCDSize*DigitSize); Precision := AVal^.GetPrecision; SetValueBCD(AVal); end; constructor TBCD.InitReal(AVal: Real; APrec: Byte; ASize: Integer); begin inherited Init; if ASize > MaxBCDSize then BCDSize := MaxBCDSize else BCDSize := ASize; GetMem(Value, ASize*DigitSize); Precision := APrec; SetValueReal(AVal); end; constructor TBCD.InitPChar(AVal: PChar; APrec: Byte; ASize: Integer); begin inherited Init; if ASize > MaxBCDSize then BCDSize := MaxBCDSize else BCDSize := ASize; GetMem(Value, ASize*DigitSize); Precision := APrec; SetValuePChar(AVal); end; destructor TBCD.Done; begin FreeMem(Value, BCDSize*DigitSize); inherited Done; end; constructor TBCD.Load(var S: TStream); begin S.Read(BCDSize, SizeOf(BCDSize)); S.Read(Sign, SizeOf(Sign)); GetMem(Value, BCDSize*DigitSize); S.Read(Value^, BCDSize*DigitSize); S.Read(Precision, SizeOf(Precision)); end; procedure TBCD.Store(var S: TStream); begin S.Write(BCDSize, SizeOf(BCDSize)); S.Write(Sign, SizeOf(Sign)); S.Write(Value^, BCDSize*DigitSize); S.Write(Precision, SizeOf(Precision)); end; function TBCD.GetValue: PBCDArray; var WrkValue: PBCDArray; begin GetMem(WrkValue, BCDSize*DigitSize); Move(Value^, WrkValue^, BCDSize*DigitSize); GetValue := WrkValue; end; function TBCD.GetSign: TBCDSign; begin GetSign := Sign; end; function TBCD.GetPrecision: Byte; begin GetPrecision := Precision; end; function TBCD.GetBCDSize: Integer; begin GetBCDSize := BCDSize; end; procedure TBCD.SetValueBCD(AVal: PBCD); var SaveSize: Integer; SavePrecision: Byte; begin if AVal = nil then exit; FreeMem(Value, BCDSize*DigitSize); SaveSize := GetBCDSize; SavePrecision := GetPrecision; Value := AVal^.GetValue; BCDSize := AVal^.GetBCDSize; Precision := AVal^.GetPrecision; if Precision > SavePrecision then begin SetBCDSize(SaveSize); SetPrecision(SavePrecision); end else begin SetPrecision(SavePrecision); SetBCDSize(SaveSize); end; SetSign(AVal^.GetSign); end; procedure TBCD.SetSign(ASign: TBCDSign); var i: integer; begin Sign := BCDPositive; if ASign = BCDPositive then exit; {allow negative sign only if value is non-zero} for i := GetBCDSize downto 1 do if Value^[i] <> 0 then begin Sign := BCDNegative; exit; end; end; procedure TBCD.SetValueReal(AVal: Real); var i, BCDIndex: integer; ValStr: String; begin FillChar(Value^, BCDSize*DigitSize, #0); Str(abs(AVal):BCDSize:Precision, ValStr); BCDIndex := BCDSize; for i :=length(ValStr) downto 1 do if ValStr[i] in ['0'..'9'] then begin Value^[BCDIndex] := ord(ValStr[i]) - ord('0'); dec(BCDIndex); end; if AVal < 0.0 then SetSign(BCDNegative) else SetSign(BCDPositive); end; procedure TBCD.SetValuePChar(AVal: PChar); var i, BCDIndex: integer; SavePrec: Byte; SaveSign: TBCDSign; begin if AVal = nil then exit; SaveSign := BCDPositive; SavePrec := Precision; Precision := 0; FillChar(Value^, BCDSize*DigitSize, #0); if StrLen(AVal) = 0 then exit; BCDIndex := BCDSize; for i := StrLen(AVal) downto 0 do case AVal[i] of '0'..'9': begin Value^[BCDIndex] := ord(AVal[i]) - ord('0'); dec(BCDIndex); end; '(',')','-': begin SaveSign := BCDNegative; end; '.': begin Precision := BCDSize - BCDIndex; end; end; {case} SetPrecision(SavePrec); SetSign(SaveSign); end; procedure TBCD.SetPrecision(APrec: Byte); begin if APrec = Precision then exit; if APrec < Precision then ShiftRight(Precision - APrec) else ShiftLeft(APrec - Precision); Precision := APrec; end; procedure TBCD.SetBCDSize(ASize: Integer); var SaveSize: Integer; WrkVal: PBCDArray; begin if ASize = GetBCDSize then exit; if ASize > MaxBCDSize then ASize := MaxBCDSize; GetMem(WrkVal, ASize*DigitSize); FillChar(WrkVal^, ASize*DigitSize, #0); if ASize < GetBCDSize then Move(Value^[(GetBCDSize-ASize)+1], WrkVal^, ASize*DigitSize) else if ASize > GetBCDSize then Move(Value^, WrkVal^[(ASize-GetBCDSize)+1], GetBCDSize); FreeMem(Value, GetBCDSize*DigitSize); Value := WrkVal; BCDSize := ASize; end; procedure TBCD.AddBCD(AVal: PBCD); var WrkValue: PBCD; begin WrkValue := new(PBCD, InitBCD(AVal)); WrkValue^.SetPrecision(Precision); WrkValue^.SetBCDSize(BCDSize); if GetSign <> AVal^.GetSign then if AVal^.GetSign = BCDNegative then begin WrkValue^.AbsoluteValue; BCDSubtract(@Self, WrkValue); Dispose(WrkValue, Done); exit; end else {AVal^.GetSign = BCDPositive} begin AbsoluteValue; BCDSubtract(WrkValue, @Self); SetValueBCD(WrkValue); Dispose(WrkValue, Done); exit; end; BCDAdd(@Self, WrkValue); Dispose(WrkValue, Done); end; procedure TBCD.AddReal(AVal: Real); var WrkValue: PBCD; begin WrkValue := new(PBCD, InitReal(AVal, GetPrecision, GetBCDSize)); AddBCD(WrkValue); Dispose(WrkValue, Done); end; procedure TBCD.AddPChar(AVal: PChar); var WrkValue: PBCD; begin WrkValue := new(PBCD, InitPChar(AVal, GetPrecision, GetBCDSize)); AddBCD(WrkValue); Dispose(WrkValue, Done); end; procedure TBCD.SubtractBCD(AVal: PBCD); var WrkValue: PBCD; SaveSign: TBCDSign; begin if AVal = nil then exit; WrkValue := new(PBCD, InitBCD(AVal)); WrkValue^.SetPrecision(GetPrecision); WrkValue^.SetBCDSize(GetBCDSize); if GetSign <> AVal^.GetSign then begin WrkValue^.SetSign(Sign); BCDAdd(@Self, WrkValue); Dispose(WrkValue, Done); exit; end; SaveSign := Sign; AbsoluteValue; WrkValue^.AbsoluteValue; if CompareBCD(WrkValue) < 0 then begin BCDSubtract(WrkValue, @Self); SetValueBCD(WrkValue); if SaveSign = BCDNegative then SetSign(BCDPositive) else SetSign(BCDNegative); end else begin BCDSubtract(@Self, WrkValue); SetSign(SaveSign); end; Dispose(WrkValue, Done); end; procedure TBCD.SubtractReal(AVal: Real); var WrkValue: PBCD; begin WrkValue := new(PBCD, InitReal(AVal, GetPrecision, GetBCDSize)); SubtractBCD(WrkValue); Dispose(WrkValue, Done); end; procedure TBCD.SubtractPChar(AVal: PChar); var WrkValue: PBCD; begin WrkValue := new(PBCD, InitPChar(AVal, GetPrecision, GetBCDSize)); SubtractBCD(WrkValue); Dispose(WrkValue, Done); end; procedure TBCD.MultiplyByBCD(AVal: PBCD); var NewSign: TBCDSign; WrkValue: PBCD; HighDigit, i, j: integer; SavePrec: Byte; begin if AVal = nil then exit; if GetSign = AVal^.GetSign then NewSign := BCDPositive else NewSign := BCDNegative; AbsoluteValue; SavePrec := Precision; WrkValue := new(PBCD, InitReal(0, 0, GetBCDSize + AVal^.GetBCDSize)); Precision := 0; i := 1; while (i < AVal^.GetBCDSize) and (AVal^.Value^[i] = 0) do inc(i); HighDigit := i; for i := AVal^.GetBCDSize downto HighDigit do begin if AVal^.Value^[i] <> 0 then for j := 1 to AVal^.Value^[i] do WrkValue^.AddBCD(@Self); ShiftLeft(1); end; WrkValue^.Precision := SavePrec + AVal^.GetPrecision; WrkValue^.SetPrecision(SavePrec); Precision := SavePrec; SetValueBCD(WrkValue); SetSign(NewSign); end; procedure TBCD.MultiplyByReal(AVal: Real; APrec: Byte); var WrkVal: PBCD; begin WrkVal := new(PBCD, InitReal(AVal, APrec, GetBCDSize)); MultiplyByBCD(WrkVal); Dispose(WrkVal, Done); end; procedure TBCD.MultiplyByPChar(AVal: PChar; APrec: Byte); var WrkVal: PBCD; begin WrkVal := new(PBCD, InitPChar(AVal, APrec, GetBCDSize)); MultiplyByBCD(WrkVal); Dispose(WrkVal, Done); end; procedure TBCD.DivideByBCD(AVal: PBCD); var NewSign: TBCDSign; WrkVal, WrkDiv, WrkQuo: PBCD; HighDigit, i, j, IterationCount: integer; TempPrec, QuotientPrec: Byte; begin if AVal = nil then exit; if AVal^.CompareReal(0.0) = 0 then exit; {avoid zero divide} if GetSign = AVal^.GetSign then NewSign := BCDPositive else NewSign := BCDNegative; WrkVal := new(PBCD, InitBCD(@Self)); WrkVal^.AbsoluteValue; WrkQuo := new(PBCD, InitReal(0, 0, GetBCDSize)); i := 1; while (i < WrkVal^.GetBCDSize) and (WrkVal^.Value^[i] = 0) do inc(i); HighDigit := i; WrkVal^.SetPrecision(WrkVal^.GetPrecision+(HighDigit-1)); TempPrec := WrkVal^.GetPrecision; WrkVal^.Precision := 0; WrkDiv := new(PBCD, InitBCD(AVal)); WrkDiv^.AbsoluteValue; i := 1; while (i < WrkDiv^.GetBCDSize) and (WrkDiv^.Value^[i] = 0) do inc(i); HighDigit := i; WrkDiv^.ShiftLeft(HighDigit - 1); WrkDiv^.Precision := 0; QuotientPrec := TempPrec - AVal^.GetPrecision; IterationCount := WrkVal^.GetBCDSize - QuotientPrec + GetPrecision; for i := 1 to IterationCount do begin while CompareBCD(WrkDiv) > 0 do begin WrkVal^.SubtractBCD(WrkDiv); inc(WrkQuo^.Value^[WrkQuo^.GetBCDSize]); end; WrkDiv^.ShiftRight(1); WrkQuo^.ShiftLeft(1); end; WrkQuo^.Precision := QuotientPrec; SetValueBCD(WrkQuo); SetSign(NewSign); Dispose(WrkVal, Done); Dispose(WrkQuo, Done); Dispose(WrkDiv, Done); end; procedure TBCD.DivideByReal(AVal: Real; APrec: Byte); var WrkVal: PBCD; begin WrkVal := new(PBCD, InitReal(AVal, APrec, GetBCDSize)); DivideByBCD(WrkVal); Dispose(WrkVal, Done); end; procedure TBCD.DivideByPChar(AVal: PChar; APrec: Byte); var WrkVal: PBCD; begin WrkVal := new(PBCD, InitPChar(AVal, APrec, GetBCDSize)); DivideByBCD(WrkVal); Dispose(WrkVal, Done); end; procedure TBCD.AbsoluteValue; begin SetSign(BCDPositive); end; procedure TBCD.Increment; begin AddReal(1); end; procedure TBCD.Decrement; begin SubtractReal(1); end; procedure TBCD.ShiftLeft(ShiftAmount: Byte); var i: integer; begin if ShiftAmount = 0 then exit; for i := 1 to (BCDSize - ShiftAmount) do Value^[i] := Value^[i+ShiftAmount]; for i := ((BCDSize - ShiftAmount) + 1) to BCDSize do Value^[i] := 0; end; procedure TBCD.ShiftRight(ShiftAmount: Byte); var i: integer; begin if ShiftAmount = 0 then exit; for i := BCDSize downto (ShiftAmount + 1) do Value^[i] := Value^[i - ShiftAmount]; for i := ShiftAmount downto 1 do Value^[i] := 0; end; function TBCD.BCD2Int: LongInt; var i: integer; wrkLongInt: LongInt; begin BCD2Int := 0; if Precision = GetBCDSize then exit; wrkLongInt := 0; i := 1; repeat wrkLongInt := wrkLongInt * 10; wrkLongInt := wrkLongInt + Value^[i]; inc(i); until i = (GetBCDSize - GetPrecision); if GetSign = BCDNegative then BCD2Int := -wrkLongInt else BCD2Int := wrkLongInt; end; function TBCD.BCD2Real: Real; var i: integer; wrkIntegerPart, wrkFractionPart: real; begin BCD2Real := 0.0; wrkIntegerPart := 0; wrkFractionPart := 0; if GetPrecision < GetBCDSize then begin i := 1; repeat wrkIntegerPart := wrkIntegerPart * 10.0; wrkIntegerPart := wrkIntegerPart + Value^[i]; inc(i); until i = (GetBCDSize - GetPrecision + 1); end; if Precision > 0 then begin i := GetBCDSize; repeat wrkFractionPart := wrkFractionPart + Value^[i]; wrkFractionPart := wrkFractionPart / 10.0; dec(i); until i = (GetBCDSize - GetPrecision); end; if GetSign = BCDNegative then BCD2Real := -(wrkIntegerPart + wrkFractionPart) else BCD2Real := (wrkIntegerPart + wrkFractionPart); end; function TBCD.PicStr(picture: string; Width: Integer; BlankWhenZero: Boolean): String; var integer_str, decimal_str, pic_str, val_str: string; decimal_encountered, significant_digits_encountered: boolean; number_of_digits, number_of_integer_digits, number_of_decimal_digits, sub_pic, sub_val, i: integer; begin {pic} decimal_encountered := false; number_of_digits := 0; number_of_integer_digits := 0; for i := 1 to length(picture) do if upcase(picture[i]) in ['$', '-', '9', 'Z'] then begin inc(number_of_digits); if not decimal_encountered then inc(number_of_integer_digits); end else if picture[i] = '.' then decimal_encountered := true; number_of_decimal_digits := number_of_digits - number_of_integer_digits; integer_str := ''; for i := (GetBCDSize - GetPrecision) downto 1 do integer_str := char(ord('0')+Value^[i]) + integer_str; if length(integer_str) > number_of_integer_digits then delete(integer_str, 1, length(integer_str)-number_of_integer_digits) else while length(integer_str) < number_of_integer_digits do integer_str := '0' + integer_str; decimal_str := ''; for i := (GetBCDSize - GetPrecision + 1) to GetBCDSize do decimal_str := decimal_str + char(ord('0')+Value^[i]); if length(decimal_str) > number_of_decimal_digits then delete(decimal_str, number_of_decimal_digits+1, 255) else while length(decimal_str) < number_of_decimal_digits do decimal_str := decimal_str + '0'; val_str := integer_str + decimal_str; pic_str := copy(st_Blanks, 1, length(picture)); significant_digits_encountered := false; sub_pic := 1; sub_val := 1; while sub_pic <= length(picture) do begin if val_str[sub_val] in ['1'..'9']then significant_digits_encountered := true; if upcase(picture[sub_pic]) in ['(', ')'] then if Sign = BCDNegative then begin pic_str[sub_pic] := upcase(picture[sub_pic]); sub_pic := sub_pic + 1; end else begin pic_str[sub_pic] := ' '; sub_pic := sub_pic + 1; end else if upcase(picture[sub_pic]) in ['Z', '$', '-'] then begin if significant_digits_encountered then pic_str[sub_pic] := val_str[sub_val] else pic_str[sub_pic] := ' '; sub_pic := sub_pic + 1; sub_val := sub_val + 1; end else if picture[sub_pic] = '.' then begin pic_str[sub_pic] := '.'; sub_pic := sub_pic + 1; significant_digits_encountered := true; end else if picture[sub_pic] = '9' then begin pic_str[sub_pic] := val_str[sub_val]; if pic_str[sub_pic] = ' ' then pic_str[sub_pic] := '0'; sub_pic := sub_pic + 1; sub_val := sub_val + 1; significant_digits_encountered := true; end else if picture[sub_pic] = ',' then begin if pic_str[sub_pic - 1] = ' ' then pic_str[sub_pic] := ' ' else pic_str[sub_pic] := ','; sub_pic := sub_pic + 1; end else begin pic_str[sub_pic] := upcase(picture[sub_pic]); sub_pic := sub_pic + 1; end; end; if Sign = BCDNegative then begin sub_pic := 0; while (sub_pic < length(picture)) and (picture[sub_pic + 1] in ['(', '-', ',']) do sub_pic := sub_pic + 1; while (sub_pic > 0) and (pic_str[sub_pic] <> ' ') do sub_pic := sub_pic - 1; if (sub_pic > 0) and (picture[sub_pic] <> '(') then pic_str[sub_pic] := '-'; end; sub_pic := 0; while (sub_pic < length(picture)) and (picture[sub_pic + 1] in ['(', '$', ',']) do sub_pic := sub_pic + 1; while (sub_pic > 0) and (pic_str[sub_pic] <> ' ') do sub_pic := sub_pic - 1; if (sub_pic > 0) and (picture[sub_pic] <> '(') then pic_str[sub_pic] := '$'; if (BlankWhenZero) and (pic_str = BCDZero^.PicStr(picture, bpw_Fixed, false)) then pic_str := copy(st_Blanks, 1, length(picture)); if Width = bpw_fixed then PicStr := pic_str else begin if pic_str[1] = ' ' then begin sub_pic := 1; while (sub_pic < length(pic_str)) and (pic_str[sub_pic] = ' ') do inc(sub_pic); if pic_str[sub_pic] <> ' ' then dec(sub_pic); delete(pic_str, 1, sub_pic); end; if pic_str[length(pic_str)] = ' ' then begin sub_pic := length(pic_str); while (sub_pic > 1) and (pic_str[sub_pic] = ' ') do dec(sub_pic); if pic_str[sub_pic] <> ' ' then inc(sub_pic); delete(pic_str, sub_pic, 255); end; PicStr := pic_str; end; end; function TBCD.StrPic(dest: PChar; picture: string; Width: Integer; BlankWhenZero: Boolean; Size: Integer): PChar; var WrkStr: array[0..300] of char; begin if dest = nil then begin StrPic := nil; exit; end; StrPCopy(WrkStr, PicStr(picture, Width, BlankWhenZero)); StrLCopy(dest, WrkStr, Size); StrPic := dest; end; function TBCD.CompareBCD(AVal: PBCD): Integer; var i: integer; BCD1, BCD2: PBCD; begin if AVal = nil then exit; if GetSign < AVal^.GetSign then begin CompareBCD := -1; exit; end else if GetSign > AVal^.GetSign then begin CompareBCD := +1; exit; end; BCD1 := new(PBCD, InitBCD(@Self)); BCD2 := new(PBCD, InitBCD(AVal)); if GetBCDSize > AVal^.GetBCDSize then BCD2^.SetBCDSize(GetBCDSize) else BCD1^.SetBCDSize(AVal^.GetBCDSize); CompareBCD := 0; for i := 1 to BCD1^.GetBCDSize do begin if BCD1^.Value^[i] < BCD2^.Value^[i] then begin if BCD1^.GetSign = BCDNegative then CompareBCD := +1 else CompareBCD := -1; Dispose(BCD1, Done); Dispose(BCD2, Done); exit; end else if BCD1^.Value^[i] > BCD2^.Value^[i] then begin if BCD1^.GetSign = BCDNegative then CompareBCD := -1 else CompareBCD := +1; Dispose(BCD1, Done); Dispose(BCD2, Done); exit; end; end; end; function TBCD.CompareReal(AVal: Real): Integer; var WrkVal: PBCD; begin WrkVal := new(PBCD, InitReal(AVal, GetPrecision, GetBCDSize)); CompareReal := CompareBCD(WrkVal); Dispose(WrkVal, Done); end; function TBCD.ComparePChar(AVal: PChar): Integer; var WrkVal: PBCD; begin WrkVal := new(PBCD, InitPChar(AVal, GetPrecision, GetBCDSize)); ComparePChar := CompareBCD(WrkVal); Dispose(WrkVal, Done); end; begin BCDZero := new(PBCD, InitReal(0.0, 2, 3)); RegisterType(RBCD); end. { DOCUMENTATION } AJCBCD - Binary Coded Decimal (BCD) Unit This unit was written using Borland International's Borland Pascal v7.0, and the Object Windows Library (OWL)/Turbo Vision (TV) library objects provided with that product. I have not copyrighted this program, and donate it to the public domain. All portions of this program may be used, modified, and/or distributed, in whole or in part. I wrote this unit to provide myself with some reusible functions that would provide support for BCD math similar to what I've grown accustomed to with the COBOL Packed Decimal (COMP-3) data type. Note that in true "Packed Decimal", two decimal digits are "packed" into each data byte. I chose not to implement my BCD support in that manner. I may be less efficient in terms of space, but I simply placed a single decimal digit in each byte. I am just a "hobby" programmer, having written nothing for anyone byt myself. Therefore, this unit may not be "elegant"; and, there are certainly better ways of implementing some of the routines that I coded (like perhaps coding some in assembler which I'm NOT very good at). However, it has met my own needs, and I'm actually a little proud of what I accomplished here (especially in being able to figure out algorithms to multiply and divide!). By the way, let me admit one thing right up front...I have NOT tested ALL of the routines in this unit (in particular, the Divide routine). I clearly marked all of the routines that have not been fully tested. You can assume that all other routines HAVE been tested, because I used them in a real application. This might not be the best BCD routines available, but they might actually be usefull to someone else--besides, it's free! I am open to suggestions, comments, or enhancements (although, I can't promise quick turn around because I have a real job, plus I teach, plus I have a family--then I code for fun --in that order ). My CompuServe ID is 71331,501. This unit exports some constants (described below). But, the big deal in this unit is the Binary Coded Decimal object that this unit defines. This object (TBCD) allows you to allocate a BCD data type of any number of digits. This object then provides methods for adding, subtracting, multiplying, and dividing to/from/by other numbers. It also has methods for altering the number of digits stored as well as the precision (number of places after the decimal place). Constants --------- DigitSize - Stores the size, in bytes, of each individual digit (currently one byte). bpw_Fixed - Passed to the PicSTR and STRPic methods (see the description of PicSTR for an explanation of how to use this constant). bpw_Variable - See bpw_Fixed above. bpz_Blank - See bpw_Fixed above. bpz_NotBlank - See bpw_Fixed above. MaxBCDSize - Limits the maximum number of BCD digits that can be allocated for a BCD object. Arbitrarily set to 100. st_Blanks25 - A string constant containing 25 blanks. Used just as a convenience in building the st_Blanks constant (see below). st_Blanks - A String constant containing 255 blanks. Used simply as a convenient reference/resource for lots of blanks (sort of like the "SPACES" constant in COBOL). RBCD - TStreamRec used for registering the TBCD object type for use with streams. Var --- BCDZero - A PBCD object that is initialized to a value of zero in the unit's initialization section. Used as a convenience whenever you need a BCD object with a value of zero. Type ---- TBCDArray - An array of "MaxBCDSize" (100) bytes. Allocated by the TBCD object to store the BCD value. Each byte stores an individual digit of the value. TBCDSign - An enumerated data type used by the TBCD object to represent the sign of the BCD value. Valid values are "BCDNegative" and "BCDPositive". TBCD ----------------------------------------------------------------------------- TObject TBCD ÚÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ³ ³ BCDSize ³ ÃÄÄÄÄÄÄ´ ³ Sign ³ ³ Init ³ ³ Value ³ ³*Done ³ ³ Precision ³ ³ Free ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÀÄÄÄÄÄÄÙ ³ InitBCD MultiplyByBCD ³ ³ InitReal MultiplyByReal ³ ³ InitPChar MultiplyByPChar ³ ³ Done DivideByBCD ³ ³ Load DivideByReal ³ ³ Store DivideByPChar ³ ³ GetValue AbsoluteValue ³ ³ GetSign Increment ³ ³ GetPrecision Decrement ³ ³ GetBCDSize ShiftLeft ³ ³ SetValueBCD ShiftRight ³ ³ SetValueReal BCD2Int ³ ³ SetValuePChar BCD2Real ³ ³ SetSign PicStr ³ ³ SetPrecision StrPic ³ ³ SetBCDSize CompareBCD ³ ³ AddBCD CompareReal ³ ³ AddReal ComparePChar ³ ³ AddPChar ³ ³ SubtractBCD ³ ³ SubtractReal ³ ³ SubtractPChar ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fields --------------------------------------------------------------------- BCDSize: Integer; Read Only The size, in number of digits, of the BCD number. Count represents the available space for digits, and does NOT include the decimal point, or sign. Sign: TBCDSign; Read Only The mathmatical sign of the current value (i.e., indicates whether the current value is positive or negative). Value: PBCDArray; Read Only A pointer to a TBCDArray (an array of bytes) used to store the value of the BCD number. Even though TBCDArray is defined with "MaxBCDSize" entries, only BCDSize bytes are actually allocated from memory. Therefore, you must be sure to be careful never to read or write to subscript values greater than BCDSize. If you need to change the number of digits allocated you should use the SetBCDSize method. The BCD value is stored in the array with the lowest order digit in the BCDSize position and the highest order digit in the 1st position. For example, if BCDSize is 5, Precision is 2, and the value being stored is 2.35, then a 5-byte array would be allocated on the heap, and the array values would be (in order from position 1 to 5) (0, 0, 2, 3, 5). Precision: Byte; Read Only This value represents the number of digits after the decimal point. Keep in mind that there is no actual decimal point stored. Methods --------------------------------------------------------------------- InitBCD constructor InitBCD(AVal: PBCD); Sets BCDSize, Sign, and Precision to the same values as the BCD object referred to by AVal. It then calls SetValueBCD passing AVal in order to allocate a TBCDArray for Value, and copies the AVal^.Value into this object's Value array. InitReal constructor InitReal(AVal: Real; APrec: byte; ASize: Integer); Sets BCDSize to ASize, Precision to APrec, then calls SetValueReal(AVal) in order to allocate a Value array and initialize it with the value in AVal. InitPChar ** Not yet tested ** constructor InitPChar(AVal: PChar; APrec: byte; ASize: Integer); Sets BCDSize to ASize, Precision to APrec, then calls SetValuePChar(AVal) in order to allocate a Value array and initialize it with the value in AVal. Done destructor Done; virtual; Frees the memory allocated for the Value array and calls "inherited Done". Load constructor Load(var S: TStream); constructs and loads a BCD object from the stream S by first loading BCDSize, Sign, the Value array, and last the Precision. Store procedure Store(var S: TStream); Stores the BCD object on the stream S by storing the BCDSize, Sign, Value array, and the Precision. GetValue function GetValue: PBCDArray; Allocates a new TBCDArray of size BCDSize and copies the value in Value into the new array, then returns a pointer to the new array. Note that it will be the calling routine's responsibility for disposing the array pointed to by the returned pointer (use GetBCDSize to determine how much memory to free). FreeMem should be used for this disposal, not Dispose. GetSign function GetSign: TBCDSign; Returns the sign of the BCD value. The sign is returned as a TBCDSign value; either "BCDNegative", or "BCDPositive". GetPrecision function GetPrecision: Byte; Returns a byte value equal to the Precision (number of decimal places) of the BCD number. GetBCDSize function GetBCDSize: Inteteger; Returns an integer value representing the number of BCD digits allocated in the Value array. SetValueBCD procedure SetValueBCD(AVal: PBCD); If Value is not nil, then the current Value array is freed. Next, a new array of size BCDSize is allocated on the heap, by calling AVal^.GetValue. Next, the copied value array is adjusted from the size and precision of AVal to the BCDSize and Precision of this BCD object (if different). Lastly, the sign of the value is copied by calling AVal^.GetSign. SetValueReal procedure SetValueReal(AVal: Real); The current value array is initialized to all zero digits. AVal is converted to a string, and that string is copied digit by digit into the array. If AVal is less than zero then Sign is set to BCDNegative, otherwise it is set to BCDPositive. SetValuePChar ** Not Tested Yet ** procedcure SetValuePChar(AVal: PChar); The current value array is initialized to all zero digits. AVal is copied into the array digit by digit. This routine validity checking to verify that the string actually represents a numeric value. The only character values that are processed are: 1) numbers (0-9), 2) period (locates decimal point), and 3) minus sign or parentheses to determine that the sign is negative. Examples: "(123.45)" would be interpreted as negative 123.45; "123.45" would be interpreted as positive 123.45; "-123.45" would be interpreted as negative 123.45. Likewise, "555-55-5555" would be interpreted as a negative 555555555; and "I'll have 2" would be interpreted as a positive 2. If there are no number characters in the string at all, then the resulting value is zero. SetSign procedure SetSign(ASign: TBCDSign); Sets Sign to ASign (either BCDNegative or BCDPositive). Regardless of the value of ASign, if the Value of the BCD is zero, then SetSign forces Sign to be BCDPositive (in otherwords, BCD never stores a negative zero). SetPrecision procedure SetPrecision(APrec: Byte); Sets Precision to APrec. It also shifts the value array left or right, depending on whether the precision is being increased or decreased. If the decimals are shifted left, dropping high order digits (hopefully zeros), and padding zeros on the right. If the precision is being decreased, the digits are shifted to the right, padding the high order digits with zeros, and dropping low order digits. Note that the size of the value array is NOT changed by this method. SetBCDSize procedure SetBCDSize(ASize: Integer); Sets BCDSize to ASize. It also allocates a new value array of the new size, and copies value from the original value array to the new one. The value is copied right justified (in otherwords, high order digits are dropped or padded with zeros depending on whether the new size is larger or smaller than the old size). The original value array is freed, and Value is set to point to the new value array. AddBCD procedure AddBCD(AVal: PBCD); Adds AVal^.Value to Self.Value. This is a "signed add". By that I mean that the signs of the two operands ARE taken into account when adding the two values together. The result is stored in the Value array. Mathmatically, it might be represented by the following formula: "Self := Self + AVal;" AddReal procedure AddReal(AVal: Real); Converts AVal to a temporary PBCD object and calls AddBCD to add that temporary BCD number to Self. AddPChar ** Not yet tested ** procedure AddPChar(AVal: PChar); Converts AVal to a temporary PBCD object and calls AddBCD to add that temporary BCD number to Self. SubtractBCD procedure SubtractBCD(AVal: PBCD); Subtracts AVal^.Value from Self.Value. This is a "signed subtract". By that I mean that the signs of the two operands ARE taken into account when subtracting the two values. The result is stored in the Value array. Mathmatically, it might be represented by the following formula: "Self := Self - AVal;" SubtractReal ** Not yet tested ** procedure SubtractReal(AVal: Real); Converts AVal to a temporary PBCD object and calls SubtractBCD to subtract that temporary BCD number from Self. SubtractPChar ** Not yet tested ** procedure SubtractPChar(AVal: PChar); Converts AVal to a temporary PBCD object and calls SubtractBCD to subtract that temporary BCD number from Self. MultiplyByBCD procedure MultiplyByBCD(AVal: PBCD); Multiplies Self.Value by AVal^.Value. This is a "signed multiply". By that I mean that the signs of the two operands ARE taken into account when multiplying the two values. The result is stored in the Value array. Mathmatically, it might be represented by the following formula: "Self := Self * AVal;" MultiplyByReal ** Not yet tested ** procedure MultiplyByReal(AVal: Real); Converts AVal to a temporary PBCD object and calls MultiplyByBCD to multiply Self by that temporary BCD number. MultiplyByPChar ** Not yet tested ** procedure MultiplyByPChar(AVal: PChar); Converts AVal to a temporary PBCD object and calls MultiplyByBCD to mulitiply Self by that temporary BCD number. DivideByBCD ** Not yet tested ** procedure DivideByBCD(AVal: PBCD); Divides Self.Value by AVal^.Value. This is a "signed divide". By that I mean that the signs of the two operands ARE taken into account when dividing the two values. The result is stored in the Value array. Mathmatically, it might be represented by the following formula: "Self := Self/AVal;" DivideByReal ** Not yet tested ** procedure DivideByReal(AVal: Real); Converts AVal to a temporary PBCD object and calls DivideByBCD to divide Self by that temporary BCD number. DivideByPChar ** Not yet tested ** procedure DivideByPChar(AVal: Real); Converts AVal to a temporary PBCD object and calls DivideByBCD to divide Self by that temporary BCD number. AbsoluteValue procedure AbsoluteValue; Calls SetSign to set Sign to BCDPositive, regardless of its current value. Increment ** Not yet tested ** procedure Increment; Adds 1 Value. Decrement ** Not yet tested ** procedure Decrement; Subtracts 1 from Value. ShiftLeft procedure ShiftLeft(ShiftAmount: Byte); Shifts all of the digits left by ShiftAmount, dropping high order digits, and padding the low order digits with zeros. The Precision of the number is NOT altered. In effect, ShiftLeft multiplies Value by a power of 10. ShiftRight procedure ShiftRight(ShiftAmount: Byte); Shifts all of the digits right by ShiftAmount, dropping low order digits, and padding the high order digits with zeros. The Precision of the number is NOT altered. In effect, ShiftRight divides Value by a power of 10. BCD2Int ** Not yet tested ** function BCD2Int: LongInt; Converts the BCD value (and it's sign) to a LongInt data value. Decimal positions are simply truncated, not rounded. Range checking is not performed. If the number of significant digits of the BCD number (not counting decimal positions) is too large for a LongInt number, high order digits are lost, and the resulting LongInt value will probably be meaningless. BCD2Real ** Not yet tested ** function BCD2Real: Real; Converts the BCD value (and it's sign) to a Real data value. Range checking is not performed. If the number of significant digits of the BCD number is too loarge for a Real number, the results are unpredictable, and will probably be meaningless. PicStr function PicStr(picture: string; Width: Integer; BlankWhenZero: Boolean): string; PicStr converts the BCD number into a formatted Pascal string. If you are familiar with the used of Edit Numeric Formatting in Cobol, then you're a long ways toward understanding how to use this routine. First, let's get the simple parameters out of the way... Width indicates whether or not insignificant leading and trailing blanks should be removed from the resulting string. If Width is equal to 0 then the length of the resulting string will always equal the length of Picture, regardless of any leading or trailing blanks in the result string. If Width is equal to 1, then any leading and/or trailing blanks will be removed from the resulting string before returning. For your convenience, two constants have been defined for use with this parameter: bpw_Fixed = 0 and bpw_Variable = 1. BlankWhenZero indicates whether the entire result string should be forced to completely blank, regardless of any formatting characters in Picture, if the formatted value is logically equal to zero. The BCD value itself is NOT used to make this determination. The determination is made by comparing the result string to the string from formatting BCDZero (zero value) with the same Picture string. If the two strings are equal, then this result string is considered to be equal to zero. If BlankWhenZero is true, then such zero valued results are forced to all blanks. If BlankWhenZero is false, the the result string is left to whatever it becomes based on the Picture string. If BlankWhenZero is true, and Width = bpw_Fixed, then the result string is a string of blanks equal in length to the length of Picture. If Width = bpw_Variable, the the result will be an empty strint (''). For example, if the BCD number = 0.0023, and the formatted result is "0.00%", BlankWhenZero = false would result in "0.00%", while BlankWhenZero = true would result in a blank or empty string depending on Width. For your convenience, two constants have been defined for use with this parameter: bpz_Blank = true, and bpz_NotBlank = false. Now, the more complicated part...picture... The "picture" parameter is a string that provides a template for formatting the value of the BCDnumber. The possible template characters are... '9' - Fills with a digit from the value (or zero if no digit position available in the BCD number) 'Z' - Just like '9', except that insignificant zeros (i.e., leading zeros) are left blank. 'z' - Exactly the same as a capital "Z" '$' - Just like 'Z', except that the right most unused (blank) dollar-sign position is filled with a '$'. COBOL afficianados will recognize this as a "floating dollar sign". '-' - Just like 'Z', except that if the BCD number value is negative, then the right most unused (blank) dash position is filled with a '-'. COBOL afficianoados will recognize this as a "floating negative sign". '(' - If the template contains a parenthesis, and the BCD number value is negative, then the result string is surrounded with parenthesis. ')' - If the template contains a parenthesis, and the BCD number value is negative, then the result string is surrounded with parenthesis. '.' - Indicates the decimal point position, and is included in the result string. If the template does not contain a period, then the decimal position is assumed to be at the right end of the template, no decimal point is included in the result string, and no decimal place values are included in the result string. ',' - If any significant (non-zero) value positions precede the comma position, then a comma is inserted at this position in the result string. This would normally be used to format commas to separate thousands positions in large numbers. ANY other characters are simply inserted into the result string in their relative position. Some examples might help... Value Picture String Fixed Result Variable Result 123.45 '$$$$$9.99' ' $123.45' '$123.45' 123456.78 '$$$$$9.99' '123456.78' '123456.78' 123456.78 '$$$$$$9.99' '$123456.78' '$123456.78' 123456.78 '$,$$$,$$9.99' '$123,456.78' '$123,456.78' 123.45 '9999' '0123' '0123' -1234.6 '---,--9.99' ' -1,234.60' '-1,234.60' -10.15 '(99.99)' '(10.15)' '(10.15)' 10.15 '(99.99)' ' 10.15 ' '10.15' 75 'z9.999%' '75.000%' '75.000%' Got the idea? I hope so. I have developed a similar stand-alone routine for formatting inteter and real numbers, and find it to be a VERY handy way to nicely format my number values for presentation on the screen or on a paper report. StrPic ** Not yet tested ** function StrPic(dest: PChar; picture: string; Width: Integer; BlankWhenZero: Boolean): PChar; Calls PicStr(picture, Width, BlankWhenZero) to get a formatted Pascal string. This string is converted to an null terminated string. StrLCopy is used to copy that null terminated string to Dest, limited by Size. See PicStr for an explanation of the use of picture, Width, and BlankWhenZero. StrPic returns a pointer to dest. CompareBCD function CompareBCD(AVal: PBCD): Integer; Compares the signed values of Self and AVal. CompareBCD returns -1 if Self is less than AVal, returns +1 of Self is greater than AVal, and returns 0 if the two values are equal. CompareReal ** Not yet tested ** function CompareReal(AVal: Real): Integer; Converts AVal to a temporary PBCD object and calls CompareBCD to perform the actual comparison with that temporary BCD number. CompareReal returns the value returned by CompareBCD. ComparePChar ** Not yet tested ** function ComparePChar(AVal: PChar): Integer; Converts AVal to a temporary PBCD object and calls CompareBCD to perform the actual comparison with that temporary BCD number. ComparePChar returns the value returned by CompareBCD.